Reproductive & Developmental Biology 2010; 34(3): 127-134
Published online September 30, 2010
Copyright © The Korean Society of Animal Reproduction and Biotechnology.
김은영,김연옥,김재연,박민지,박효영,한영준,문성호,오창언,김영훈,이성수,고문석,박세필
미래생명공학연구소, 제주대학교 줄기세포연구소연구센터
This study was to investigate the effect of flavonoid treatment on in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos, and their pregnancy and delivery rate after embryo transfer into recipient. In experiment 1, to optimize the flavonoid concentration, parthenogenetic day 2 (≥ 2-cell) embryos were cultured in 0 (control), 1, 10 and 20 μM flavonoid for 6 days. In the results, in vitro development rate was the highest in 10 μM flavonoid group (57.1%) among treatment groups (control, 49.5%; 1 μM, 54.2%; 20 μM, 37.5%), and numbers of total and ICM cells were significantly (p<0.05) higher in 10 μM flavonoid group than other groups. We found that 10 μM flavonoid treatment can significantly (p<0.05) decrease the apoptotic index and derive high expression of anti-oxidant, anti-apoptotic, cell growth and development marker genes such as Mn-SOD, Survivin, Bax inhibitor, Glut-5, In-tau, compared to control group. In experiment 2, to produce the cloned Jeju Black Cattle, beef quality index grade 1 bull somatic cells were transferred into enucleated bovine MII oocytes and reconstructed embryos were cultured in 10 μM flavonoid added medium. When the in vitro produced day 7 or 8 SCNT blastocysts were transferred into a number of recipients, 10 μM flavonoid treatment group presented higher pregnancy rate (10.2%, 6/59) than control group (5.9%, 2/34). Total three cloned Jeju Black calves were born. Also, two cloned calves in 10 μM flavonoid group were born and both were all healthy at present, while the one cloned calf born in control group was dead one month after birth. In addition, when the result of short tandem repeat marker analysis of each cloned calf was investigated, microsatellite loci of 11 numbers matched genotype between donor cell and cloned calf tissue. These results demonstrated that the flavonoid addition in culture medium may have beneficial effects on in vitro and in vivo developmental capacity of SCNT embryos and pregnancy rate.
Keywords: Bovine, SCNT, Flavonoid, Jeju Black Cattle, Pregnancy
Reproductive & Developmental Biology 2010; 34(3): 127-134
Published online September 30, 2010
Copyright © The Korean Society of Animal Reproduction and Biotechnology.
김은영,김연옥,김재연,박민지,박효영,한영준,문성호,오창언,김영훈,이성수,고문석,박세필
미래생명공학연구소, 제주대학교 줄기세포연구소연구센터
This study was to investigate the effect of flavonoid treatment on in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos, and their pregnancy and delivery rate after embryo transfer into recipient. In experiment 1, to optimize the flavonoid concentration, parthenogenetic day 2 (≥ 2-cell) embryos were cultured in 0 (control), 1, 10 and 20 μM flavonoid for 6 days. In the results, in vitro development rate was the highest in 10 μM flavonoid group (57.1%) among treatment groups (control, 49.5%; 1 μM, 54.2%; 20 μM, 37.5%), and numbers of total and ICM cells were significantly (p<0.05) higher in 10 μM flavonoid group than other groups. We found that 10 μM flavonoid treatment can significantly (p<0.05) decrease the apoptotic index and derive high expression of anti-oxidant, anti-apoptotic, cell growth and development marker genes such as Mn-SOD, Survivin, Bax inhibitor, Glut-5, In-tau, compared to control group. In experiment 2, to produce the cloned Jeju Black Cattle, beef quality index grade 1 bull somatic cells were transferred into enucleated bovine MII oocytes and reconstructed embryos were cultured in 10 μM flavonoid added medium. When the in vitro produced day 7 or 8 SCNT blastocysts were transferred into a number of recipients, 10 μM flavonoid treatment group presented higher pregnancy rate (10.2%, 6/59) than control group (5.9%, 2/34). Total three cloned Jeju Black calves were born. Also, two cloned calves in 10 μM flavonoid group were born and both were all healthy at present, while the one cloned calf born in control group was dead one month after birth. In addition, when the result of short tandem repeat marker analysis of each cloned calf was investigated, microsatellite loci of 11 numbers matched genotype between donor cell and cloned calf tissue. These results demonstrated that the flavonoid addition in culture medium may have beneficial effects on in vitro and in vivo developmental capacity of SCNT embryos and pregnancy rate.
Keywords: Bovine, SCNT, Flavonoid, Jeju Black Cattle, Pregnancy
print Article | |
Export to Citation | Open Access |
Google Scholar | Send to Email |
pISSN: 2671-4639
eISSN: 2671-4663